⁸⁴Kr(³He,α) **1976Me01**

History									
Type	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. A. Mccutchan	NDS 125, 201 (2015)	31-Dec-2014						

 $E(^3He)=18$ MeV. Measured $\sigma(\theta)$ in 3.75° steps starting at 7.5° using a multi-angle spectrograph and Ilford K-1 emulsion plates (FWHM=25 keV); DWBA analysis.

83Kr Levels

E(level)	L [†]	C^2S^{\ddagger}	E(level)	L [†]	C^2S^{\ddagger}	E(level)	L [†]
0 561 5 694 5 811 8 1100 10	4 (3) (3) 1 (1)	0.8 2.2	1668 [#] 15 2035 15 2121 15 2188 15 2261 20	(3,2) (3,2)		2495 20 2585 20 2733 20	(1) (3,2) (3)

[†] From DWBA analysis. Most states have rather structureless angular distributions. The calculated distributions for L=3 and L=4 were too similar to make definite spin assignments to most states. Furthermore, some angular distributions are well fitted with L=2 curves. However, it is unlikely that ⁸⁴Kr contains appreciable population of either the 2d5/2 or 2d3/2 neutron orbitals. All L-values, except those for the g.s. and 811-keV states, must thus be regarded as questionable.

 $^{^{\}ddagger}$ C²S from DWBA analysis, derived from d σ /d Ω =N×C²S× σ _{DWBA}/(2J+1). Normalization, N, is chosen to give the shell-model value C²S=8 for the g.s. C²S is given for the most probable configuration, consistent with L-assignment. See 1976Me01 for additional S-values for other possibilities if L-assignment is uncertain.

[#] Possible doublet.